A Vector Autoregressive ENSO Prediction Model
نویسندگان
چکیده
The authors investigate a sea surface temperature anomaly (SSTA)-only vector autoregressive (VAR) model for prediction of El Niño–Southern Oscillation (ENSO). VAR generalizes the linear inverse method (LIM) framework to incorporate an extended state vector including many months of recent prior SSTA in addition to the present state. An SSTA-only VARmodel implicitly captures subsurface forcing observable in the LIM residual as red noise. Optimal skill is achieved using a state vector of order 14–17 months in an exhaustive 120-yr cross-validated hindcast assessment. It is found that VAR outperforms LIM, increasing forecast skill by 3 months, in a 30-yr retrospective forecast experiment.
منابع مشابه
Vector Autoregressive Model Selection: Gross Domestic Product and Europe Oil Prices Data Modelling
We consider the problem of model selection in vector autoregressive model with Normal innovation. Tests such as Vuong's and Cox's tests are provided for order and model selection, i.e. for selecting the order and a suitable subset of regressors, in vector autoregressive model. We propose a test as a modified log-likelihood ratio test for selecting subsets of regressors. The Europe oil prices, ...
متن کاملFunctional-Coefficient Autoregressive Model and its Application for Prediction of the Iranian Heavy Crude Oil Price
Time series and their methods of analysis are important subjects in statistics. Most of time series have a linear behavior and can be modelled by linear ARIMA models. However, some of realized time series have a nonlinear behavior and for modelling them one needs nonlinear models. For this, many good parametric nonlinear models such as bilinear model, exponential autoregressive model, threshold...
متن کاملForecasting ENSO with a smooth transition autoregressive model
This study examines the benefits of nonlinear time series modelling to improve forecast accuracy of the El Niño Southern Oscillation (ENSO) phenomenon. The paper adopts a smooth transition autoregressive (STAR) modelling framework to assess the potentially regime-dependent dynamics of sea surface temperature anomaly. The results reveal STAR-type nonlinearities in ENSO dynamics, resulting in sup...
متن کاملCodebook Prediction: a Nonlinear Signal Modeling Paradigm
A nonlinear generalization of the family of autoregressive signal models is introduced. This generalization can be viewed as an autoregressive model with state-varying parameters. For such signals, minimum mean-square error prediction can be reformulated as an interpolation problem. A novel interpretation of the signal as a codebook for its own prediction leads to an interpolation strategy rese...
متن کاملA Nonlinear Model of Economic Data Related to the German Automobile Industry
Prediction of economic variables is a basic component not only for economic models, but also for many business decisions. But it is difficult to produce accurate predictions in times of economic crises, which cause nonlinear effects in the data. Such evidence appeared in the German automobile industry as a consequence of the financial crisis in 2008/09, which influenced exchange rates and a...
متن کامل